
Hydrol. Earth Syst. Sci., 16, 3309–3314, 2012
www.hydrol-earth-syst-sci.net/16/3309/2012/
doi:10.5194/hess-16-3309-2012
© Author(s) 2012. CC Attribution 3.0 License.

Hydrology and
Earth System

Sciences

Technical Note: Bias correcting climate model simulated daily
temperature extremes with quantile mapping

B. Thrasher1,2, E. P. Maurer3, C. McKellar 4, and P. B. Duffy5

1Climate Analytics Group, Palo Alto, CA 94303, USA
2Climate Central, Princeton, NJ 08542, USA
3Santa Clara University, Civil Engineering Dept., Santa Clara, California, 95053-0563, USA
4San Jose State University, Dept. of Meteorology and Climate Science, San Jose, CA 95126, USA
5Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Correspondence to:B. Thrasher (bridget@climateanalyticsgroup.org)

Received: 27 March 2012 – Published in Hydrol. Earth Syst. Sci. Discuss.: 25 April 2012
Revised: 16 August 2012 – Accepted: 20 August 2012 – Published: 17 September 2012

Abstract. When applying a quantile mapping-based bias cor-
rection to daily temperature extremes simulated by a global
climate model (GCM), the transformed values of maximum
and minimum temperatures are changed, and the diurnal
temperature range (DTR) can become physically unrealistic.
While causes are not thoroughly explored, there is a strong
relationship between GCM biases in snow albedo feedback
during snowmelt and bias correction resulting in unrealistic
DTR values. We propose a technique to bias correct DTR,
based on comparing observations and GCM historic simu-
lations, and combine that with either bias correcting daily
maximum temperatures and calculating daily minimum tem-
peratures or vice versa. By basing the bias correction on a
base period of 1961–1980 and validating it during a test pe-
riod of 1981–1999, we show that bias correcting DTR and
maximum daily temperature can produce more accurate es-
timations of daily temperature extremes while avoiding the
pathological cases of unrealistic DTR values.

1 Introduction

While monthly, seasonal, and annual changes in climate have
the potential to affect ecosystems and human development
(e.g., Fowler and Kilsby, 2003; Palmer and Raisanen, 2002;
Schneider et al., 2007), there has been an increasing inter-
est in the effect of shorter-term extreme events (Christensen
et al., 2007; IPCC, 2011). These events can cause billions
of dollars (USD) in damages in hours or days (Bouwer and

Vellinga, 2003), and changes in their magnitude and/or fre-
quency are projected to increase the risk of amplified dam-
ages in future decades (Easterling et al., 2000).

To assess regional changes in daily extreme rainfall and
temperature, global climate model (GCM) output must be
downscaled to a more regionally appropriate scale. The many
methods to achieve this can be broadly classified as dy-
namical, which uses a fine-scale climate model to interpo-
late GCM signals, and statistical, which uses historically de-
rived statistical relationships between GCM-scale and fine-
scale features to estimate regional climate (Christensen et
al., 2007). In either case, before any downscaled data can
be ingested into a model to estimate specific impacts of cli-
mate change, some adjustment to account for the GCM bi-
ases must be included, since at least some of the bias is sys-
tematic, being induced by factors such as inadequate terrain
resolution in the GCM (Haerter et al., 2011).

We focus here on a common form of bias correction,
namely quantile mapping (Panofsky and Brier, 1968; Wood
et al., 2002). The quantile mapping approach has the bene-
fit of accounting for GCM biases in all statistical moments,
though, like all statistical downscaling approaches, it is as-
sumed that biases relative to historic observations will be
constant during the projections. While this quantile map-
ping approach has been used extensively for downscaling
monthly average precipitation and temperature (Hayhoe et
al., 2008; Maurer and Duffy, 2005; Wood et al., 2004), its
adaptation to daily data is relatively new (Abatzoglou and
Brown, 2012; Maurer et al., 2010). When maximum daily
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Fig. 1.For Case 1, the total number of occurrences for the validation
period of 1981–1999 whereTmin > Tmax after BC. Results for two
GCM simulations are shown: a high number of occurrences (upper
panel) and a low number of occurrences (lower panel).

temperature (Tmax) and minimum daily temperature (Tmin)
are adjusted with quantile-mapping bias correction (here-
inafter referred to as BC), the bias correction can modify the
diurnal temperature range (DTR) and in some instances can
result in the relationship betweenTmax andTmin being phys-
ically unrealistic. In this study, we compare the different al-
ternatives to (1) minimize the error in the bias-correctedTmax
andTmin values, and (2) reduce the frequency of cases where
Tmax andTmin are reversed in the BC process. We examine
the ability to minimize these instances by instead applying
the BC to diurnal temperature range (DTR) and eitherTmin
or Tmax, where the remaining variable is derived by adding
or subtracting the DTR as appropriate. In this way GCM-
simulated trends in DTR,Tmin andTmax can be retained with-
out the need for ad hoc adjustments.

2 Methods and data

Table 1 lists the 17 GCM simulations from which daily
Tmax and Tmin values were obtained for the 1961–1999
period. These GCM simulations were archived as part
of the World Climate Research Programme’s (WCRP’s)
Coupled Model Intercomparison Project phase 3 (CMIP3)

Fig. 2. Cases whereTmin > Tmax at the grid cell at 57◦ N, 43◦ E,
during 1980–1989 for GCM run MRI Run 3.

multi-model dataset effort (Meehl et al., 2007). GCM out-
put was interpolated onto a common 2-degree grid to enable
intercomparison and summaries across GCMs. For an obser-
vational baseline, a 0.5-degree daily global gridded dataset
(Adam and Lettenmaier, 2003; Maurer et al., 2009) was ag-
gregated to the same 2-degree grid spacing. DTR was calcu-
lated for each day in the 39-yr GCM simulations, as well as
for the gridded observations, as the difference betweenTmax
andTmin.

The BC approach used here is essentially that of Mau-
rer et al. (2010), but, rather than being applied to daily av-
erage temperatures, it is applied toTmax, Tmin, or DTR in-
dependently. In summary, the BC uses a base period where
both daily observations and daily GCM-simulated values are
available. For each day of the year, a moving window of
±15 days is used to select all candidate days representative
of the date, and all of these candidate days are sorted and
ranked to produce for each calendar day two cumulative dis-
tribution functions (CDFs): one for observations and one for
the GCM. For this study, we used 1961–1980 as the base
period for which the BC relationships were derived. Thus
for any calendar date, there would be 31 days in the mov-
ing window and 20 yr in the base period, resulting in 620
points to define the CDF for each variable. A bias-corrected
value for a GCM-simulated daily value is retrieved by using
the CDF for the GCM to determine the quantile associated
with the value, and then drawing the observed value from
that same day’s CDF for the same quantile. For example, a
medianTmaxvalue for 15 February in the GCM output will be
transformed into the medianTmax value in the observations
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Fig. 3. CDFs for maximum daily temperature based on the period
1961–1980 for observations and MRI Run 3. Arrows illustrate the
quantile mapping for the dailyTmax value for 17 April 1983.

for 15 February, where the median value is that daily value
exceeded 50 % of the time in the set of 620 days defining the
CDFs for 15 February.

We perform three variations of daily temperature BC:

– Case 1: BC performed forTmax andTmin;

– Case 2: BC performed forTmin and DTR, withTmax cal-
culated asTmin + DTR;

– Case 3: BC performed forTmax and DTR, withTmin cal-
culated asTmax− DTR.

Case 1 is the default case, with shortcomings discussed
above. Cases 2 and 3 are evaluated by comparing the root-
mean-square error (RMSE) across all days and grid cells for
global land areas, where the RMSE is calculated for the de-
rived variable (i.e., for Case 2 RMSE forTmax is assessed,
and for Case 3 RMSE forTmin is assessed). The three cases
are assessed for the validation period of 1981–1999.

3 Results and discussion

The results for Case 1 are shown in Fig. 1. Despite the wide
variability in the number of cases whereTmin > Tmax after
BC of the GCM output, Fig. 1 shows, for extreme high and
low cases, that these tend to occur predominantly at high lat-
itudes (and this is generally the case for all of the GCM sim-
ulations used in this study). For these high latitude regions,
the GCMs have biases in mean and/or variability that tend
to produce more occurrences ofTmin > Tmax when adjusted

Fig. 4.Same as Fig. 3, but for minimum daily temperatures.

Table 1.GCMs and run numbers included in this study.

Simulation

1 CCCMA-CGCM3-1: Run 1
2 CCCMA-CGCM3-1: Run 2
3 CCCMA-CGCM3-1: Run 3
4 CNRM-CM3
5 GFDL-CM2-0
6 GFDL-CM2-1
7 IPSL-CM4
8 MIROC3-2-MEDRES: Run 1
9 MIROC3-2-MEDRES: Run 2
10 MIUB-ECHO-G: Run 1
11 MIUB-ECHO-G: Run 2
12 MIUB-ECHO-G: Run 3
13 MPI-ECHAM5
14 MRI-CGCM2.3.2A: Run 1
15 MRI-CGCM2.3.2A: Run 2
16 MRI-CGCM2.3.2A: Run 3
17 MRI-CGCM2.3.2A: Run 4

through BC. How this can occur is demonstrated here using
a single grid cell located at latitude 57◦ N longitude 43◦ E
(northeast of Moscow, Russia) from MRI Run 3 (Run 13 in
Table 1). For the decade of the 1980s, 3653 days in total,
there were 198 cases where the bias correction resulted in
Tmin > Tmax, which are depicted in Fig. 2. For this decade, the
DTR has a mean of 8.7◦C and a standard deviation of 5.2◦C.
For the 198 cases in Fig. 2, the mean DTR is 3.4◦C, standard
deviation 1.8◦C. A two-sample t-test atα = 0.05 shows the
difference between these means to be statistically significant
with very high confidence (p < 0.0001), demonstrating how
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Fig. 5.Fraction of occurrences across all (land area) GCM grid cells
and all March–May days in the validation period of 1981–1999
versus the snow albedo feedback error, calculated from Hall and
Qu (2006) based on GCM-simulated seasonal cycle between April
and May.

Fig. 6. The RMSE (◦C) between gridded observations and three
versions ofTmax for 17 GCM simulations: regridded daily GCM
Tmax (blue), bias-corrected daily GCMTmax (red), and dailyTmax
derived from bias-corrected DTR andTmin (green, Case 2).

cases with small DTR, relative to the GCM bias, are more
prone to having this issue.

The method by which this occurs is illustrated for the same
grid cell and run used above for one of the cases in Fig. 2,
corresponding to 17 April 1983. The CDF for maximum tem-
perature is constructed as described above, using a window
of ±15 days around 17 April. Using the period 1961–1980
as the climatological period, 620 days are used to define the
CDFs. As shown in Fig. 3, the GCM underpredicts the daily
Tmax value throughout the distribution. Figure 4 shows the
same as Fig. 3, but forTmin, which the GCM also underesti-
mates, but by a much wider margin than forTmax. The quan-
tile mapping is illustrated in Figs. 3 and 4, transforming the
raw GCMTmax andTmin of 5.3◦C and 1.9◦C, respectively,

Fig. 7. The RMSE (◦C) between gridded observations and three
versions ofTmin for 17 GCM simulations: regridded daily GCM
Tmin (blue), bias-corrected daily GCMTmin (red), and dailyTmin
derived from bias-corrected DTR andTmax (green, Case 3).

Fig. 8. RMSE (◦C) between gridded observations and two versions
of DTR for 17 GCM simulations: regridded daily GCM DTR (blue)
and bias-corrected daily GCM DTR (red).

to bias-corrected values of 6.1◦C and 11.6◦C, respectively,
producingTmin > Tmax and a physically impossible DTR.

For most GCM simulations, the greatest number of cases
occurs in March–May, or during the Northern Hemisphere
snowmelt season. Hall and Qu (2006) identified GCM bi-
ases in the representation of melt season snow albedo in
the Northern Hemisphere as a major factor in the variabil-
ity in GCM-simulated climate sensitivity. Climate model er-
rors in simulating snow would have a direct impact on DTR,
with increased DTR being related to increased snow melt
(Karl et al., 1993), or conversely, increased snow presence
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being related to a decreased DTR, especially early and late
in the snow season, due largely to the large decline inTmax
when snow is present due to increased albedo (Leathers et
al., 1995). While a thorough investigation of this is ongo-
ing, the GCM error in snow albedo feedback (from the ab-
scissa of Fig. 3 in Hall and Qu, 2006) and the frequency of
Tmin > Tmax occurrences in this study are highly significantly
correlated (Pearsonr2

= 0.87; Fig. 5), illustrating a strong
relation between GCM biases in snow albedo and the biases
in daily surface air temperatures that cause moreTmin > Tmax
occurrences during BC, though causality has not yet been de-
termined. It should be noted that, even in the extreme case
over Eastern Europe for the worst case of the GCMs used
here, fewer than 400 occurrences are observed in the 19 yr
validation period, indicating less than 6 % of days having
Tmin > Tmax, with most of global land areas and GCM simu-
lations exhibiting far less than this. On average for all GCM
simulations,Tmin > Tmax occurs approximately 0.25 % of the
time.

The two approaches conducted in this study to remedy the
occurrence ofTmin > Tmax following the BC process, Cases 2
and 3, are compared to determine the preferable alternative.
Figure 6 shows the results for Case 2, where the “obs vs.
original BC” RMSE refers toTmax produced as in Case 1,
and the “obs vs. derived BC” being that calculated as de-
scribed above for Case 2. First, both cases of bias correction
improve the original GCM output, as is evident by the RMSE
for both Case 1 and Case 2 being lower than for the “obs
vs. GCM” points. The RMSE shown in Fig. 6 for Case 2
is higher than for Case 1, which shows that, for all GCM
simulations, the approach of Case 2, while eliminating oc-
currences ofTmin > Tmax, deteriorates the estimation ofTmax
in the BC process.

Figure 7 shows similar results to Fig. 6 but for Case 3. In
this alternative, “obs vs. original BC” refers to the BCTmin
as in Case 1, and “obs vs. derived BC” is that calculated ac-
cording to the description of Case 3 above. As with Case 2
(Fig. 6) for most GCMs, either approach to BC (Case 1 or
Case 3 in Fig. 7) results in decreased RMSE, thus producing
Tmin values that bear greater resemblance to observations. In
contrast to Case 2, theTmin values derived in Case 3 show
reduced RMSE for 12 of the 17 GCM simulations, indicat-
ing that this alternative not only removes the possibility of
Tmin > Tmax in the BC process, but results in an improved
estimation ofTmin on average.

That GCM-simulatedTmax appears more capable of ben-
efiting from a quantile mapping bias correction thanTmin
suggests that the biases, relative to observations, exhibited
for Tmax may be more systematic than those forTmin. While
a mechanism explaining this has neither been expressed in
the literature, to the authors’ knowledge, nor been proposed
here, the consistency with other research results (Maurer et
al., 2012) is encouraging as a topic for future efforts.

Finally, while Case 3 appears to be the best solution of the
alternatives assessed in this study, since applying BC to DTR

is a new application, we verified that DTR is not degraded in
the BC process (Fig. 8). The RMSE for DTR relative to ob-
servations (for the 1981–1999 validation period) is reduced
on average 28 % after BC. Compared to bias correctingTmax
andTmin independently (i.e., Case 1), bias correctingTmax
and DTR and derivingTmin asTmax-DTR (Case 3) results in
reduced RMSE ofTmax (by 15 % on average) andTmin (by
7 % on average), and improves DTR as well.

4 Conclusions

We evaluated the potential to improve the quantile mapping
bias correction approach when applied to daily GCM output
of maximum and minimum temperatures. A direct bias cor-
rection of bothTmax andTmin results in some cases where
the unrealistic occurrence ofTmin>Tmax appears. To remedy
this, we first derive the diurnal temperature range for each
day, and then apply the bias correction to DTR and either
Tmax or Tmin, calculating the remaining variable.

We find that bias correcting daily DTR andTmax and
calculatingTmin asTmax-DTR eliminates the occurrence of
Tmin > Tmax and in general improves the estimation ofTmin
compared to bias correctingTmin directly. This approach will
be further assessed and implemented in future applications of
quantile mapping bias correction of daily GCM temperature
output.
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